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Improved Estimation of Weibull Parameters
Considering Unreliability Uncertainties

Antonio Fernández and Manuel Vázquez

Abstract—We propose a linear regression method for estimating
Weibull parameters from life tests. The method uses stochastic
models of the unreliability at each failure instant. As a result, a het-
eroscedastic regression problem arises that is solved by weighted
least squares minimization. The main feature of our method is an
innovative s-normalization of the failure data models, to obtain
analytic expressions of centers and weights for the regression.
The method has been Monte Carlo contrasted with Benard’s
approximation, and Maximum Likelihood Estimation; and it has
the highest global scores for its robustness, and performance.

Index Terms—Heteroscedastic regression, life tests, Weibull dis-
tributions, weighted least squares.

ACRONYMS1

HUWE Heteroscedastic Unreliability Weibull Estimation.

LR Linear Regression.

MLE Maximum Likelihood Estimation.

MRSE Mean Relative Squared Error.

MSE Mean Squared Error.

WLS Weighted Least Squares.

NOTATION

The time counted from the beginning of a widget’s
life

Unreliability, failure probability of a widget

, Scale parameter, and shape parameter of a Weibull
distribution

Number of widgets in a life test

Number of Monte Carlo trials for evaluation of
estimators
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1For the sake of simplicity, the singular and plural of acronyms are spelled
the same.

I. INTRODUCTION

T HE Weibull model is the most popular, widely used model
in reliability theory [1]. It states the unreliability as a func-

tion of time in the form

(1)

The failure profile of a specific type of widgets is described by
its and values. These parameters are estimated with the help
of a life test, which is an experiment that outputs the series of
failure times of a set of widgets of the kind that one wishes
to analyse. The ranks are natural labels that main-
tain a coherent order with respect to the failure times, that is

.
Bayesian methods [2] are the most rigorous, complete ap-

proaches to parameter estimation, but they are difficult to ob-
tain and interpret. Moreover, the prior conjugate joint distribu-
tion for the Weibull parameters is not continuous [1], [3], which
makes the approach even harder. Perhaps due to this complexity,
Maximum Likelihood Estimation (MLE) [4]–[7], and Linear
Regression (LR) [8], [9] approaches are commonly used. Al-
though MLE estimators offer better accuracy when is large
enough, LR is preferred in some environments for the following
reasons.

• The MLE shape parameter estimator is s-biased when
the sample size is small [10], [11], although resources [5],
[12]–[14] have been developed to overcome this drawback.

• MLE leads to equations that are not solvable in explicit
form, so numerical procedures are needed, and conver-
gence and numerical problems arise [15], [16].

• Engineers often choose LR methods because of their com-
putational simplicity, and ease of graphical interpretation
[17], [18][19].

LR methods proceed transforming the Weibull failure model
(1) to obtain an affine model suitable to be fitted by regression
techniques. Isolating the exponential in the second term of (1),
and taking logarithms leads to a first reliability-related variable

(2)

Taking logarithms once again leads to a second reliability-
related variable

(3)
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From (3), an affine relationship (4) can be established be-
tween and the time-related variable .

(4)

A key problem that arises when regressing on model (4) is
how to determine data point coordinates in the space
from the life test. Variable can be determined from failure
times , and can be determined from the unreliabilities at
failures as in

(5)

But are probabilities, so they cannot be directly observed.
The most straightforward choice for are relative frequencies

; however, this approach is not very accurate, and
gets a strong -bias under transformations (2) and (3). Indeed,
for the last point, , it yields , which overflows

.
A better choice for is Median Rank [11], [20]. Median

Rank cannot be put into explicit form, so its value has to be
determined by numerical techniques or approximated methods.
A simple analytic approach to Median Rank, which has become
a standard way to estimate , is Benard’s approximation [21]:

(6)

Sometimes it is assumed that are homoscedatic, i.e. that
the uncertainties are the same for any ; then the regression
line should minimize the simple residual

(7)
In fact, are heteroscedastic as its uncertainties are

not the same. More elaborate regression algorithms such as
Weighted Least Squares (WLS) [22], [23] take into account
the heteroscedasticity by weighting terms of the residual with
uncertainty-related factors (8).

(8)

The weights are commonly chosen as the inverses of the vari-
ances of (9).

(9)

Uncertainties of have been considered by some authors.
Bergman [24] assumes that the variance of is constant
in order to find analytically in consonance with transforma-
tions (2), and (3). Bergman’s hypothesis, although it is useful,
is not very accurate, as will be shown in Fig. 2, where is
plotted against , revealing a considerable variation. Faucher
and Tyson [25] evaluate uncertainty from the binomial model

with prefixed confidence levels. Their method requires carrying
numerical tables to evaluate the weights.

In Section II, we develop the Heteroscedastic Unreliability
Weibull Estimation (HUWE). HUWE is a new LR method
based on the assumption of the -normality of . This approx-
imation allows us to find, working exclusively with analytical
procedures, highly accurate estimates for centers and
weights in terms of hyper-geometric functions [26]. Analyticity
makes HUWE based software straightforward, reliable, and
easily portable because it can be designed without numerical
tables nor ‘ad hoc’ iterative solving procedures. It is well
known that these two resources compromise the reliability and
portability of software: numerical tables because errors while
typing can lead to very difficult to detect errors; and ‘ad hoc’
iterative solving procedures because they involve convergence
problems.

To clarify the methodology, an illustrative example of
HUWE, applied to a small life test, is given in Section III. In
Section IV, a Monte Carlo evaluation procedure is designed
to compare HUWE performance with other methods. The
results of contrast with Benard and MLE methods are given in
Section V. According with these results, HUWE performs the
best when we consider a wide range of possible values.
Moreover, HUWE is more computationally efficient and robust
than MLE, especially when is large, and the shape param-
eter is far from 1.

II. HUWE REGRESSION METHODOLOGY

HUWE is a weighted LR method based on a statistical model
for that uses as the centralization, and dispersion of in (8)
the means , and variances respectively.

The problem with this approach is that the exact determina-
tion of the moments of leads to integrals that cannot be put in
a closed form.. HUWE fixes this problem by assuming -normal
models for . This assumption opens up a way to approxi-
mate moments as functions of the moments of the interme-
diate variables . As the moments of can be put in closed
form, this solves the problem, at the cost of a little information
leakage. An outline of the HUWE methodology is depicted in
Fig. 1. The steps in Fig. 1 will be described below.

A. Unreliability Data Points Model

A well established [27] statistical model for that assumes
the principle of indifference on the prior probability yields

(10)

Eqn. (10) gives the probability density function of the unre-
liability just at the precise instant of the failure
of a total of widgets. The model (10) can be derived by
considering that the number of ways that failures can con-
sist of failures before , failures after

, and just one failure inside ,
is .

Eqn. (10) can be also expressed in terms of the Beta Euler
function, resulting in
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Fig. 1. HUWE methodology explanation.

Fig. 2. � as a function of the normalized index of failure � � ��� � �

for several values of � .

Beta
(11)

or can be summarized in terms of the Beta distribution as

(12)

To show the amount of heteroscedasticity of the model (10),
in Fig. 2, the variance has been plotted as a function of the
normalized rank, , for several values of .

From Fig. 2, it is clear that is not constant, but reach
maxima at about , and minima for the

first, and last failures ( , and ). Moreover, it can be
established that the ratio between the maximum and minimum
variances (that qualifies the degree of heteroscedasticity) grows
with as . This result means that
Bergman’s approximation [24] gets worse as increases.

B. Moment Determination

Now we estimate the moments of defined as in (13), ac-
cording to (2).

(13)

By applying the mean and variance definitions to , we ob-
tain

Beta

Beta

(14)

1) Mean of : For the mean of , , we have

Beta
(15)
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Eqn. (15) can be analytically solved given

(16)

where is the harmonic number.
Harmonic numbers can be put in terms of the polygamma func-
tion [26] as

, where
is the famous Euler-Mascheroni constant, and

. Functions are implemented in
an accurate, robust way in multiple software packets and pro-
grams such as EISPACK, MATLAB, and MATHEMATICA.

We can use the former relationships to rewrite (16) in terms
, and arrive eventually at

(17)

2) Variance of : To get , we first calculate the non-
centered second moment of to be

Beta
(18)

(18) gives . Now, by applying the
general identity , taking into account (16),
and using polygamma functions, we reach

(19)

Collecting the above expressions for the mean (17), and
the variance (19), a remarkable symmetry becomes evident
that widely justifies the transformations of both expressions in
terms of polygamma functions (20):

(20)

C. HUWE Approximation

To determine exactly the relevant moments of , the inte-
grals (21) should be performed.

Beta

Beta

(21)

Unfortunately, (21) cannot be solved in closed form, so
HUWE uses an alternate method to approximate the moments
of through the moments of . Basically, the HUWE
approximation is the assumption of the -normality of .
This assumption is domain coherent because the domain of a
-normal distribution is the whole real line , which

Fig. 3. True and HUWE approximated � densities evolution along failure
rank (for � � �).

matches the domain of because the successive application
of transformations (2) and (3) maps the probability domain

to . A deductive consequence
of the -normality of is that should be assumed to be
log-normally distributed because both are related by (3). Of
course, the domain of is the transform of by
(2); that is, , as should be expected for a genuine
log-normal. The accuracy of HUWE will be discussed in more
detail in Section II-D.

D. Moments Determination

By applying well known relations (22) between the first mo-
ments ( , and ) of a -normal random variable , and the
first moments ( , and ) of the log-normal distributed vari-
able ,

(22)

to , we can express the HUWE approximation as

(23)

Hence, (23) is more accurate as gets closer to -normality.
To qualitatively show the accuracy of the HUWE approxima-

tion, Fig. 3 depicts the true, and approximate densities. It
can be seen that HUWE provides a good approximation, even
for low values of and , and that the approximation gets
better when grows.

A more precise analysis of the error introduced by HUWE
approximation can be performed by estimating the Kullbak-
Lleiber distance [28] from the true to the approximate density
(24). The Kullbak-Lleiber distance is a measure of the infor-
mation leakage derived by assuming the approximated density

instead of the true .
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Fig. 4. Kullback-Lleiber information leakage caused by the approximation:
� � � ���� .

(24)

Eqn. (24) has been evaluated as a function of the normalized
failure index for several values of , and plotted
in Fig. 4. The information leakage remains under 0.6 bits, and
gets very small as grows, especially for high values of .

E. Weibull Parameter Estimation

Once and have been determined by (23),
they are supplied to a WLS [22] regression algorithm as cen-
tralization and weight values for the response variable. The ex-
planatory values for the regression are derived directly as

.
The moments of do not depend on , but only on

and , so they can be pre-computed before the experiment is
done in order to improve time in repeated trials.

Using WLS in step E means that HUWE assumes that the
data are uncensored because WLS considers only errors in ,
whereas data censoring also entails errors in due to the un-
certainty of . As it is clear from Fig. 1, step E is procedurally
independent of the previous ones, so HUWE steps A to D can
be used also for censored data. However, to address the whole
problem, a protocol for modeling time uncertainties has to be
defined, and the use of double axis heteroscedastic special re-
gression techniques [29] is required.

III. EXAMPLE

To clarify the HUWE methodology, we present here a simple
example. Suppose we have performed a simple experiment with
five widgets , and we have obtained the failure times
shown below.

From test life data in Table I, we put in Table II the relevant
quantities for the estimation. We begin by putting failure times
in the first column, and associated ranks in the third column.
The abscissa coordinates in the second column are set to

TABLE I
EXAMPLE TIME SERIES

TABLE II
EXAMPLE OF THE HUWE PROCESS

. Then, we apply the HUWE methodology in Fig. 1. Step
A states the unreliability model (12) for ; that is,

; step B gives (20) to obtain
, and in the fourth, and

fifth columns. Assuming HUWE approximation (step C), use
(23) of step D to get , and for the sixth, and seventh
columns.

Finally, in step E, , and are supplied to WLS [22]
to achieve the minimization of (8). This result yields the slope

, and the y-intercept of the regression line as

(25)

(26)

Using (25) and (26) for the data in Table II, and
gives , and . Thus, according to (4), the
estimates , and

days are obtained

IV. EVALUATION PROCEDURE

In this section, we will describe the procedure, depicted in
Fig. 5, that is used to evaluate HUWE. The HUWE perfor-
mance will be determined by contrasting its ability to guess the
(hidden) value of the Weibull parameters from a
succession of failure times, against the ability of other methods
to do the same as references. The successions of failure times
that are supplied to the competing methods are synthesized as
complete, and -independent pseudo-
random samples. Each succession defines a trial (that is indexed
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Fig. 5. Monte Carlo test procedure explanation.

as ), and a large number of trials are generated to accurately
evaluate the features of the methods.

The methods used as references are Benard’s, and MLE.
More specifically, and in the context of the evaluation, we
describe the methods.

• Benard’s method uses (6) to obtain , then determines
and by (5), and eventually achieves Weibull parameters
by ordinary least squares minimization of the residual (7).

• MLE is solved by applying the iterative algorithm de-
scribed in the classical article [4].

Once the parameter estimations offered by
each competing method for the -th trial have been obtained, the
errors of each are given by

(27)

Above, the sub-index (Method), is a dummy that
stands for any particular method name (for instance, to specify
the MLE method, becomes ).

Examining Fig. 5 in more detail, at the beginning of the
evaluation process, the values of the Weibull target parameters

are settled, together with the desired range of
test life sizes (number of widgets) one wants to investigate

, and the number of trials , the number
of Monte Carlo independent repetitions of each test life. Then
the program expands the range in logarithm equally-spaced
values, and for each one it generates a stochastic sized
matrix of -independent Weibull failure times. Once has
been generated, its columns are ordered giving rise to another
matrix such that the -th column of will contain the
rank-indexed times of failures for the -th trial. The data in

are then supplied to the three estimation methods under
investigation to obtain the estimations , and
the errors mentioned above.

To quantify the ability of a method to hit the target values
, , we define the Mean Relative Square Error

measures from the error series ,
as

MRSE (28)

MRSE (29)

where the sums in (28) and (29) are over all the Monte
Carlo trials.

Mean Square Error , often used as a quality measure
of estimators, can be obtained in a direct way from by
means of

MSE MRSE

MSE MRSE (30)

MRSE are preferable to MSE when we want to compare
performances over a wide range of target values of parameters

, , because MRSE are much more stable against
changes of such values than MSE. In fact, due to scale con-
siderations [11] on the Weibull law (1), and

do not depend on at all. On the other hand,
also appears to be functionally independent of

as it will be accounted for in the evaluation results of
the next section (see Fig. 6). This double independence lets
us summarize all the information about the estimators in a
single graph.

Both , and are dimensionless quadratic
measures, so they can be expressed in a natural way in loga-
rithmic units (31).

MRSE MRSE
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Fig. 6. ���� independence from � value.

Fig. 7. Compared studio of ���� as a function of � .

MRSE MRSE (31)

Once qualifiers have been obtained for the desired
test life sizes, parameters values, and methods of interest, they
are stored in files, and post-processed to render figures.

V. RESULTS

In this section, we will show the results of applying the
methodology described above to the evaluation of the three
methods that are going to be compared.

To obtain , we have established the following envi-
ronment.

• A number of trials have been synthesized.
• A range of 36 log-spaced values for have been selected

between , and .
• As is a scale parameter, changing its value simply affects

the failure times by a multiplicative constant factor [11], so
it is enough to perform the evaluations for .

• values have been selected from the range
.

Fig. 8. � accuracy gains with respect to ���� as a function of
� .

A. Shape Parameter Estimation

We can observe in Fig. 6 that remains almost un-
changed against changes of the target values.2 This is a
good feature of as a quality measure of estimations,
and allows us to reduce the analysis to the case where .
Thus, Fig. 7 shows for each method, and .

Fig. 7 shows the quality of estimators, as a func-
tion of . Here, are very widespread due to their
strong (functional) dependence with , thus blurring the con-
trast between the three methods. So to get a graph that highlight
better the differences, it is very useful to establish a reference

competent to model the
common dependence of the behavior of the methods with .
Reasonable requirements for are that

• it should follow as closely as possible the global behavior
of the methods, especially in the asymptotic limits;

• it should be easily computable, without the need of Monte
Carlo synthesis resources; and

• it should not contain large or difficult to manage constants.
A heuristic choice for that meets well

these requirements is

MRSE (32)

By writing (32) in logarithmic units, we have

MRSE (33)

By using as a reference, we can de-
fine the accuracy gain figures for each method
(34). Of course, unlike , accuracy gains are defined in
such a way that are larger as methods perform better.

GAIN MRSE

MRSE (34)

2For the sake of clarity, Fig. 6 only shows���� , results for other
methods lead to the same conclusion.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

8 IEEE TRANSACTIONS ON RELIABILITY

Fig. 9. � accuracy gains with respect to ���� as a function of
� for � � ���.

Under these conventions, have been represented in
Fig. 8 for . Results for other values of follow
the same behavior.

B. Scale Parameter Estimation

To define accuracy gain figures for estimators, a global
reference behavior has been also defined for
them. But unlike , depends
on in a somewhat complex way. A good heuristic fit for

has been found to be (35).

MRSE (35)

By writing (35) in logarithmic units, we have

MRSE

(36)

By using MRSE as reference, we can define
gain figures for each method.

GAIN MRSE

MRSE (37)

Under these conventions, in Figs. 9–11, accuracy gains with
respect to the reference (36) have been represented for

, , and , respectively.

C. Result Summary

With respect to estimation, we can conclude from Fig. 8
that

• HUWE performs the best for low values of the number of
widgets ;

• for very low values of the number of widgets ,
MLE performs the worst; and

• as , HUWE tends to perform better (2.0 dB.)
than Benard’s, and slightly worse (0.6 dB.) than MLE.

With respect to estimation, we can conclude from
Figs. 9–11 that

Fig. 10. � accuracy gains with respect to ���� as a function of
� for � � �.

Fig. 11. � accuracy gains with respect to ���� as a function of
� for � � ��.

• the accuracy levels of the three methods are quite similar,
disregarding the fact that when , and are both
small, Benard’s method does much worse than the others;
and

• when , regardless of the value, a small dif-
ference of about remains, where the best is MLE,
then HUWE, and then Benard’s method.

Note that the advantage of HUWE against Benard’s method
can have economic significance as it offers an important reduc-
tion in the required number of widgets . For ex-
ample, regarding estimation, this reduction can be obtained
from Fig. 7, or can be estimated roughly for large values of
(38) by taking into account (32).

(38)

Aside from the accuracy results, MLE has been found to be
much more time consuming than other methods, especially for
high values of , even though HUWE pre-computation (see
Section II-E) has not been used in the evaluation. Also, when
the value is far from , the MLE computational
demand reaches the limits of the numerical representation (64
bit double-precision IEEE 754 [30]) used in the simulation, in
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such a way that numerical crashes occurred for ;
and we experienced a lack of convergence, and infinite loops
for .

VI. CONCLUSION

We presented HUWE, an algorithm for estimating Weibull
parameters from life tests that offers a good trade-off alternative
to the traditional Weibull estimators.

HUWE is based on an approximation, the assumption of
-normality for the data unreliability related variables . This

approximation allows us to express analytically the first two
moments of in a nice symmetrical form. Having determined
the means and variances of , the Weibull parameters and
are estimated by fitting the data to a linear model using WLS.

HUWE has been Monte Carlo evaluated against Benard’s ap-
proximation, and MLE. The evaluation results are as follows.

• HUWE is more robust, and computationally more efficient
than MLE. Though in some cases the accuracy of HUWE
is slightly lower than that of MLE, the global performance
of HUWE is better when one considers the whole range of
working cases.

• HUWE significantly improves the performance of Be-
nard’s approximation. For large enough numbers of
widgets, say ,. HUWE is able to get similar
confidence levels for the estimators of Weibull parameters
than Benard’s, but using 37% less widgets.

In short, HUWE is a robust, accurate, flexible algorithm that
has global advantages against traditional Weibull estimators,
constituting an appealing choice to be embedded in automated
test life systems.
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